마찰과 마모에 대한 새로운 연구결과 Friction loss at first contact: The material does not forgive
Friction loss at first contact: The material does not forgive
(Nanowerk News) Wear has major impacts on economic efficiency or health. All movable parts are affected, examples being the bearing of a wind power plant or an artificial hip joint. However, the exact cause of wear is still unclear. Scientists of Karlsruhe Institute of Technology (KIT) recently proved that the effect occurs at the first contact already and always takes place at the same point of the material. Their findings help develop optimized materials and reduce consumption of energy and raw materials.
Hard meets soft: When the sapphire ball moves across the copper
sample, the material is modified permanently
(Image: Paul Schreiber, KIT/IAM)
마찰과 마모에 대한 새로운 연구결과 독일 카를스루에 공대, 마모 발생 정확한 원인 밝혀내는데 성공 독일 카를스루에 공과대학(Karlsruhe Institute of Technology)의 연구진은 마모가 발생하는 정확한 원인을 밝혀내는데 성공했다. 마모는 경제적 효율 또는 건강에 중요한 영향을 끼친다. 모든 작동 부품들(풍력 발전소의 베어링 또는 인공 고관절)은 이런 마모에 영향을 받는다. 이런 마모의 정확한 원인은 그동안 불분명했다. 이번 연구에서는 첫 접촉에서 마모가 발생하고 항상 물질의 동일한 지점에서 발생한다는 것을 증명했다. 이 연구결과는 최적화된 재료를 개발하거나 에너지 및 원자재 소모를 줄이는데 도움을 줄 수 있을 것이다. 마찰은 물체가 서로 부착되어서 미끄러질 때 발생한다. 마찰력으로 인해서 마모가 발생하면 엄청난 비용이 든다. 운송 부분에서 소비되는 에너지의 약 30%가 마찰을 극복하는데 사용된다. 독일에서는 마찰과 마모로 인해서 국내 총생산의 약 1.2%~1.7%(42.5~555억 유로, 2017년 기준)의 비용이 발생한다. 마찰과 마모의 가장 쉬운 예로 손을 문질렀을 때 손이 따뜻하게 되는 것을 들 수 있다. 마찰로 인한 재료의 반응은 매우 복잡하다. 이번 실험에서는 사파이어 볼로 마찰을 시켰을 때 150~200 nm 깊이의 날카로운 선이 항상 발견되었다. 이것은 처음 접촉할 때 형성되었고, 원래의 상태로 되돌릴 수 없었다. 구리, 다양한 황동 합금, 니켈, 철, 텅스텐과 같은 다양한 재료로 시험했을 때도 항상 동일한 결과를 얻었다. 이러한 결과는 완전히 새로운 것이었다.
Friction basic mechanism/Quora edited by kcontents 물질 속의 결함을 전위(dislocation)라고 부른다. 전위는 돌이킬 수 없는 변형을 불러온다. 전위는 원자가 이동할 때 발생한다. 그 결과, 뱀의 움직임과 유사한 원자파가 물질 속으로 전달된다. 이러한 전위는 마찰 중에 자기 조직화되는 방식으로 선 모양의 구조를 형성한다. 이번 연구진은 재료의 기계적 응력 분포와 효과를 비교했다. 계산에 따르면, 100~200 nm 깊이에서 특정 전위 유형이 자기 조립된다는 것을 확인했다. 앞서 언급된 효과 이외에도, 표면의 산화에 대한 마찰의 영향을 조사하기 위해서 구리 샘플을 사용했다. 몇 번의 마찰 사이클 후에, 구리 산화물이 표면에 형성되었다. 시간이 지남에 따라서 구리 산화물은 반원형 나노결정성 산화구리 클러스터로 성장했다. 구리 산화물 나노결정은 비정질 구조로 둘러싸여 있었다. 마찰로 인해서 산화가 어떻게 일어나는지를 이해하는 것은 매우 중요하다. 구리는 자주 사용되고, 이것들은 작동 부품의 중요한 재료이다. 많은 베어링은 청동 또는 황동과 같은 구리 합금으로 구성된다. 따라서 이번 연구결과는 구리 가공 산업에 큰 도움을 줄 것이다. 이 연구결과는 저널 Scripta Materialia에 “The origin of surface microstructure evolution in sliding friction”과 “Stages in the tribologically-induced oxidation of high-purity copper” 라는 제목으로 게재되었다. ndsl |
edited by kcontents
The researchers present results of two studies in the Scripta Materialia ("The origin of surface microstructure evolution in sliding friction" and "Stages in the tribologically-induced oxidation of high-purity copper")
Friction occurs wherever objects adhere to each other or have sliding or rolling contact. Friction forces cause wear which results in enormous costs. About 30% of the energy consumed in the transportation sector is used to overcome friction.
In Germany, friction and wear produce costs corresponding to about 1.2 to 1.7% of the gross domestic product, i.e. between 42.5 and 55.5 billion euros in 2017. It is well known that when rubbing hands friction makes the hands get warmer. Reaction of materials to friction is far more complicated.
“Here, many things change at the same time. But how exactly this process starts, where wear particles are formed, and what effect friction energy has is hardly understood, as it has been impossible so far to look directly below the surface of the friction partners,” says Professor Peter Gumbsch, holder of KIT’s Chair for Mechanics of Materials and Head of the Fraunhofer Institute for Mechanics of Materials. “With our new microscopic methods, however, we can do so. They reveal a sharp interface in the material, at which the wear particles are detached. We want to find the cause of this material weakness.”
In their experiments, the scientists always detected a sharp line at a depth of 150 to 200 nm. It forms at first contact already and is irreversible. It is the source of the later weakness in the material. The scientists tested various materials, such as copper, various brass alloys, nickel, iron or tungsten and always obtained the same result.
”These results are entirely new. We did not expect them,” Gumbsch says. The findings contribute to understanding and reproducing processes that take place on the molecular level during friction. ”As soon as we understand the effects occurring, we can interfere specifically. It is my objective to develop guidelines for the future production of alloys or materials with better friction properties,” Gumbsch adds.
A Wave Forms
The defect in the material is a so-called dislocation. Dislocations are responsible for plastic, i.e. irreversible, deformations. Dislocations result when atoms shift relative to each other. As a result, an atomic wave propagates in the material, similar to the movement of a snake.
“We found that these dislocations during friction form the line-shaped structure observed in a self-organized manner. This effect occurred in every experiment,” explains Dr. Christian Greiner of KIT’s Institute for Applied Materials – Computational Materials Science (IAM-CMS).
The scientists compared the effect observed with the mechanical stress distribution in the material that can be calculated analytically. Calculations confirmed that certain dislocation types self-organize in a stress field at a depth between 100 and 200 nm.
Quicker Oxidation by Friction
In addition to the effect mentioned, scientists used copper samples to study the effect of friction on oxidation of surfaces. After a few friction cycles, copper oxide spots formed on the surface. In the course of time, they grew to semi-circular nanocrystalline copper oxide clusters. The copper-2-oxide nanocrystals of 3 - 5 nm in size were surrounded by an amorphous structure. They increasingly grew into the material until they overlapped and formed a closed oxide layer. According to Greiner, this phenomenon has been known for a long time, but the cause of this effect is still unknown.
“It is very important to understand how friction-caused oxidation takes place. In materials science, copper is used rather frequently. And copper also is an important material for movable parts,” Greiner says.
Many bearings consist of copper alloys, such as bronze or brass. Consequently, the study results are of considerable interest to copper processing industries.
Hard Ball Meets Soft Copper
The approach used for both studies is rather simple: a sapphire ball is moved in a very smooth, slow, and controlled way straight across a plate made of pure copper. The sapphire ball was chosen, as it always guarantees the same, reproducible contact and friction of the ball itself can be neglected due to the hardness of sapphire. After every movement across the plate, the researchers measured the deformation caused and the resulting structural modifications inside the metals.
In their unique approach, they combined friction experiments with non-destructive testing methods, data science algorithms, and high-resolution electron microscopy.
https://www.nanowerk.com/nanotechnology-news2/newsid=50972.php
KCONTENTS