10 Amazing Construction Technologies That Could Change The World(VIDEO)

10 Amazing Construction Technologies That Could Change The World


The effects of humans on the Earth are becoming more profound every day. Our energy consumption is higher than ever, and it is only getting worse. The population is also growing, which is putting a dramatic strain on basic resources like space, water, and food. Finally, the environment is rapidly changing, which has led to extreme weather that has had a tremendous effect on cities around the world.To address some of these problems, innovative changes are being made to old construction technologies to make the future beautiful, clean, and (most importantly) livable.


source materia.nl


Bamboo Cities

Most people in the West think of bamboo as a decorative material. But it is actually an incredible construction resource. Bamboo is fast growing, stronger than steel, and more resilient than cement. This is why Penda, an architecture studio in Beijing, China, wants to use bamboo as the main resource to build an entire city.The city would be sustainable, environmentally friendly, and inexpensive. The buildings would be constructed by putting bamboo rods together to make an X-joint and then tying them together with rope. Using this technique, Penda thinks they could build a city that would house 200,000 people by 2023.Once a structure is completed, additions can be easily installed both horizontally and vertically. Also, a room or even an entire structure can be disassembled without much effort, and since it is just bamboo rods and rope, it can be reused.



source science.psu.edu


Diamond Nanothreads 

As far as we know, diamonds are the hardest minerals that occur naturally on Earth. In the right form, that strength makes diamonds an excellent building material .At Penn State University, researchers have created innovative diamond nanothreads that are 20,000 times thinner than a strand of human hair. Even so, diamond nanothreads are considered the strongest material on Earth (and possibly in the universe). Besides being thin and strong, they are incredibly light. The researchers were able to create these strings of ultrathin diamonds by applying alternating cycles of pressure to isolated benzene molecules that were in a liquid state. This created rings of carbon atoms that came together in an orderly chain.These nanothreads may not be used in everyday construction, but they could be used in ambitious projects, such as the cable for a space elevator, which could lead to cheaper space tourism.



inhabitat.com


Aerogel Insulation 

Aerogel isn’t a new material. In fact, it was researched in the 1920s, with findings on the material published in 1932. It is created by removing liquid from gel and replacing the liquid with gas. By doing this, the substance becomes ultralightweight because it is 90 percent air. When made into a blanket, it is great for insulation. Aerogel has been used to insulate piping in industrial areas, and it was even used on the Mars rover. One company that wants to use aerogel technology for home insulation is Aspen Aerogels. They created a product called Spaceloft blankets that are easy to work with because they are so light and thin. Despite their light weight, the blankets have two to four times the insulation value per inch when compared to traditional insulation of fiberglass or foam. Spaceloft blankets also allow water vapor to pass through them, and perhaps most impressive, they’re fire-resistant. Although houses wrapped in aerogel blankets won’t be fireproof as the houses in Fahrenheit 451, this type of insulation would certainly reduce the number of residential fires.The problem is that aerogel is much more expensive than traditional insulation, although it will save money on energy bills in the long run. Also, not all houses can be easily retrofitted with the material. The blankets work best in older homes or with new homes that are specifically designed to be insulated with aerogel.



kcontents




"from past to future"

daily construction news

conpaper




댓글()