박쥐(Bat)의 대단한 야간비행 실력 Keen sense of touch allows bats to fly with breathtaking precision(VIDEO)

 

美 연구팀, 박쥐 피부 감각수용체 규명

"모근 근처 감각수용체 다량 분포"


사냥 중인 큰 갈색 박쥐. - 미 존스홉킨스대 제공 

출처 동아사이언스

edited by kcontents 

케이콘텐츠 편집



   박쥐가 한치 앞도 볼 수 없는 어둠 속에서도 날카로운 종유석을 피하고 비행 중인 곤충을 민첩하게 낚아챌 수 있는 이유는 초음파 감각기관 덕분인 것으로 알려져 있다. 

  

하지만 그에 못지않게 날개의 피부감각 역시 중요하다는 연구결과가 처음 나왔다.


신시아 모스 미국 존스홉킨스대 정신·뇌 과학학부 교수팀은 컬롬비아대, 메릴랜드대 연구진과 공동으로 박쥐 날개에 난 털과 연결된 감각수용체가 공기의 미세한 변화를 감지해 이 정보를 뇌로 전달하는 방식으로 박쥐가 민첩하게 비행할 수 있도록 돕는다는 사실을 밝혀내고 ‘셀 리포트’ 4월 30일자에 발표했다. 


박쥐는 포유류 중 유일하게 제대로 된 비행을 할 수 있는 동물로 시속 30km 정도로 날 수 있다.


연구팀은 북아메리카 대륙에서 흔히 볼 수 있는 큰 갈색박쥐의 날개를 조사한 결과, 날개의 얇은 피부 조직 위에 있는 섬모의 모근 근처에 감각수용체가 다량으로 분포한다는 사실을 찾아냈다.


연구팀은 박쥐가 날개짓을 할 때 미묘한 바람의 변화를 섬모로 감지하고, 모근과 연결된 감각수용체가 이 변화를 감지해 뇌로 전달한다는 사실을 확인했다. 연구팀은 다른 포유류에서는 찾아 볼 수 없는 이러한 신경 분포가 박쥐가 진화하는 동안 날개가 지금처럼 커진 것과 관계가 있을 것이라고 추측했다.


연구팀 관계자는 “민감한 날개 덕분에 박쥐가 공중에서 여러 변수에도 불구하고 민첩한 비행을 할 수 있다”며 “이런 정보를 박쥐가 비행에 어떻게 응용하는지 연구한다면 난기류에서도 안전한 비행기를 만드는 데 응용할 수 있을 것”이라고 밝혔다.

동아사이언스 이우상 기자 idol@donga.com

 

Researchers explore how information about airflow is sent to 

the brain


Closeup image of bat sensory neurons 

Image: Kara Marshall, Columbia University

source hub.jhu.edu


 

Jill Rosen

Bats fly with breathtaking precision because their wings are equipped with highly sensitive touch sensors, cells that respond to even slight changes in airflow, researchers have demonstrated for the first time.


Scientists from Johns Hopkins University, as well as Columbia University and the University of Maryland, determined how the sense of touch plays a key role in powered flight. In a paper published today in the journal Cell Reports, they show how sensory receptors in bat wings send information about airflow to neurons in the brain, enabling the bat to make split-second flight control adjustments.


"Until now no one had investigated the sensors on the bat's wing, which allow it to serve as more than a propeller, a flipper, an airplane wing or any simple airfoil," said Johns Hopkins neuroscientist Cynthia F. Moss, one of the senior authors and a professor in the Department of Psychological and Brain Sciences. "These findings can inform more broadly how organisms use touch to guide movement."


Moss and the team studied the big brown bat, a common species found throughout North America. Bats are the only mammals capable of true powered flight, able to reach speeds of 7 to 20 miles per hour, and with the sort of aerial maneuverability humans only wish they could engineer.


The team found that the evolutionary process that allowed bats to form wings resulted in unusual tactile circuitry that not only enhances control during flight, but also allows bats to use their wings to climb, cradle their young, and capture insects.


First they discovered an array of sensory receptors in bat wings—a significant number of which are clustered at the base of tiny hairs that cover the appendages. Such placement of these touch cells, both lanceolate endings and Merkel cells, allows the bat, while flying, to sense changes in airflow as the air ruffles the hairs.


When the team stimulated these hairs with brief air puffs, neurons in the bat's primary somatosensory cortex responded with precisely timed but sparse bursts of activity, suggesting this circuitry helped guide bats during fast, dynamic flight.


The team also found the innervation of bat wings to be unlike that of other mammalian forelimbs—a clue into how wings grew in bats during evolution. The researchers were surprised to discover that neurons in the wing skin connected not only to the higher parts of the spinal cord where forelimbs typically connect, but also to lower parts of the spinal cord that would normally only innervate an animal's trunk.


These findings lay the groundwork for understanding how bats use sensory information to fly with precision in the dark and catch prey midair. The information, researchers say, could eventually help people design air vehicles that better negotiate obstacles by sensing and adjusting to air turbulence.


The research team included Ellen A. Lumpkin, the other senior author and an associate professor of somatosensory biology at Columbia University, her student and lead author Kara L. Marshall, who with Laura DeSouza, another of Lumpkin's students, focused on the neuroanatomical part of the study; as well as Susanne J. Sterbing-D'Angelo of Johns Hopkins and the University of Maryland. Mohit Chadha of the University of Maryland contributed the neurophysiological aspects of the work.


Funding for the research was provided by the Air Force Office of Scientific Research to Sterbing-D'Angelo and Moss, the National Institutes of Health's National Institute of Neurological Disorders and Stroke, and the Columbia Skin Disease Research Center to Lumpkin.

http://hub.jhu.edu/2015/04/30/bat-agility-flight-sensors



edited by kcontents


"from past to future"

데일리건설뉴스 construction news

콘페이퍼 conpaper 




.

댓글()